
1 - lushprojects.com

Electronics for Artists

Iain Sharp
lushprojects.com

 Revision 2.2 - © Iain Sharp 2019

These course notes are licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

http://www.lushprojects.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

2 - lushprojects.com

Part 2: Arduino

3 - lushprojects.com

Microcontrollers and Ardunios

Microcontrollers are low-powered, single chip, computers
designed to control simple devices like domestic appliances.
A typical microcontroller is roughly equivalent to an 1980s
computer like a ZX Spectrum in terms of computing power.

Microcontrollers run software to control a device. The
microcontroller is interfaces to the physical word using
special interfacing electronics.

The Arduino is a system of software and hardware that
makes microcontroller capabilities easily available to the
hobbyist.

Microcontroller

Interface
Electronics

Sensors, switches, motors etc.

Arduino Board

Arduino Shield

4 - lushprojects.com

Arduino Uno Anatomy

14 Digital pins labelled 0 to 13
Digital = “High” or “Low”; Input or Output
High is about 5 Volts; Low is about 0 Volts
Try and avoid using pins 0 and 1 as they are also used
with programming the Arduino

6 Analog Inputs labelled 0 to 5
Can be used to measure electrical
voltages between 0 Volts and 5 Volts.
Used to measure properties of the real
world when used with the right sensors

Power Connectors
Provides limited power to external
circuits.

USB Connector
Connects to host computer

Power Connector
Provides power to circuit for
operation without a host
computer. Recommended range
is 7 to 12 volts. A voltage
regulator on the board will
generate a 5V supply.

ATMEL Microcontroller
The “brains” of the Arduino

programming LEDs
Flash to show programming
operation

Power LED
Shows when Arduino is on

Reset button
Press to restart the program.
Reset happens automatically
on power-on or when
programming is completed.

Pin 13 LED
Shows the state (high or low) of
pin 13. Lights up with the pin is
high.
Labelled “L”

5 - lushprojects.com

An Arduino for (almost) every situation

The main line
All have same board connections and support one of two
microcontrollers – the ATMEGA168 or ATMEGA328. The
328 has twice as much memory.

Arduino Decimila

Arduino Duemilanove
Simplified power supply
(automatic selection of
USB or external power)

Arduino Uno

Modernized USB interface

Some black sheep
Arduino Due

More powerful processor
and more connectors.

Arduino Nano

Compact
version

… and many many more.

All share the same concepts, programming techniques and
development tools

Arduino Skeleton

Made without a circuit board! Not
commercially available.

6 - lushprojects.com

Arduino Shields

e.g. https://coolcomponents.co.uk/collections/arduino-shields
https://www.adafruit.com/category/17_21

https://coolcomponents.co.uk/collections/arduino-shields

7 - lushprojects.com

Arduino vs Raspberry Pi

Very broadly:
- The Arduino is a low-cost device that is dedicated to controlling electronic systems
- The Raspberry Pi is a low-cost (and low power) desktop computer that can also control electronic systems via the
GPIO

Arduino Raspberry Pi

Programing environment Via host computer Built-in

Programing language C Python / Anything

Onboard video and audio No Yes

Real-time control Good Mostly bad

Physical Form Many official and unofficial
options

Several options, but less
diverse than the Arduino

8 - lushprojects.com

Arduino programming

1. Write program on your computer

2. Send (“Upload”) the program to Arduino

USB cable

3. Arduino runs program
3a. Independently of host
computer

Connect a suitable power source
and the Arduino can run on its own

3b. With a host computer

A computer can power the Arduino
and exchange information over USB

9 - lushprojects.com

Getting Ready to Program
the Arduino

In order to program the Arduino you can use their
web-based environment or a destop application.
We will use the desktop application in this
workshop.

The Arduino web site does a good job of
documenting this for various systems and is kept
up to date, so just go here and follow the
instructions for your type of computer:
https://www.arduino.cc/en/Guide/HomePage

About Arduino
programming

The Arduino program tells the Arduino what to
do. The program is written in a programming
language called Processing. Processing is based
on another language called “C”.

A program for the Arduino is called a “Sketch”.
Sketches are written in the Arduino programming
environment which also provides the ability to
upload the sketch in to the Arduino and
communicate with the Arduino when it is running
the program.

The Sketch consists of a number of commands
in sequence. Normally the commands are
executed one after another in the order they
appear in the Sketch. However there are also
special commands that can change the order of
execution.

Arduino programming Environment

Menus

Control Buttons

Sketch Editor

Program
Notification Area
Used to show
messages from the
program

Tabs to select Sketch

Status Bar
Shows the result of
the last action

10 - lushprojects.com

Configure the Desktop Application

Configure the “Board” and the “Port”

The desktop program needs to know what board it is
controlling. Choose:

Tools → Board → Arduino/Genuino Uno

It also needs to know what port to connect to the board. This
can be a little experimental, but on most machines there will
be an obvious choice. Choose:

Tools → Port → COM4 (or whatever seems appropriate!)

11 - lushprojects.com

An Arduino Blink Program

1) Connect your Arduino to the host computer
using a USB lead.
2) Run the Arduino software on your computer.
3) From the File menu choose Examples →
01.Basics → Blink. The simple Blink sketch
should load.
4) Click the Verify button to check the Sketch is
OK. In the text area at the bottom of the screen
a message like “Binary sketch size: 1008 bytes
(of a 14336 byte maximum)” should appear
once the verification is complete.

 Verify Button

5) Click the Upload button to upload the sketch
on to the Arduino. During the upload the LEDs
labelled “Rx and Tx” will flash to show the
transmission of data. Once the sketch is
uploaded you will get a message “Done
Uploading” and the sketch will start to run. The
pin 13 LED should flash.

 Upload Button

6) Try changing the values in brackets in the
“delay” function call in the “loop” function.
Repeat steps 4 and 5 and see if you notice a
difference.

/*

 Blink

 Turns on an LED on for one second,

 then off for one second, repeatedly.

 This example code is in the public domain.

 */

void setup() {

 // initialize the digital pin as an output:

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(1000); // wait for a second

}

Comment: Everything
between a /* and a */ is a
comment to help the reader
understand the sketch. It is
ignored by the Arduino

Comment:
Everything on a line
after a “//” is also a
comment

Setup function: Every sketch
must have a setup function. This is
run when the Arduino is reset to
prepare for the rest of the program

Loop function: Every
sketch must have a
loop function. After the
setup the Arduino
repeatedly performs
the actions in the loop
function

Function call: This is a piece of program
that triggers a function to perform a
required action. In this case the function
tells the Arduino to use digital pin number
“LED_BUILTIN” as an output.

12 - lushprojects.com

Using Functions

A function is a self-contained piece of computer program that is
collected in to a wrapper to make it easy for a programmer to
use. Processing contains many already defined functions you
can use in your programs. When you want to use a function
you write a function call in to the program. Here is an example
function call from the Blink Program.

pinMode(13 , OUTPUT);

Name of the function:
shows which function is
being called. In
Processing, the names
are case sensitive (small
and big letters must be
correct). The name can't
contain spaces.

Parameters of the function:
Data values that are needed by
the function are called
“parameters”. They appear in
brackets after the name. Different
values are separated by commas.
The number and types of data
values is specified in the function
definition.

In this case the first parameter is
the pin number being set. The
second parameter shows whether
this pin is an INPUT or an
OUTPUT.

If there are no parameters you still
must include an empty pair of
brackets.

Delimiter: In Processing each
statement in the language must
end with a semi-colon. This is
called a delimiter. Missing semi-
colons (or semi-colons in the
wrong place) are a common
source of problems.

Spaces allowed here

When the program reaches the function call it goes
and performs the tasks defined by the function.
Once the function as finished the program resumes
just after the function call. It is possible for one
function to call another function in a nested
structure.

Built-In Functions
We have already seen three built-in functions: PinMode(),
digitalWrite() and delay(). There are many others. You
can explore them through the example sketches
http://arduino.cc/en/Tutorial/HomePage
or at
http://arduino.cc/en/Reference/HomePage

13 - lushprojects.com

Defining Functions

As well as using pre-prepared functions, you can also define
your own. You must define a “setup()” and “loop()” function.

A weakness of processing is that the function definitions are a little
complicated when you first meet them. This is due to the decision to
build Processing on top of “C”. If you don't understand the detail, just
treat this as a piece of magic that you can copy from examples as
you need to.

Here is an example function definition from the “Blink” program.

void setup() {

 pinMode(13, OUTPUT);

}

Name of the function: choose a name
without spaces which is meaningful to you
and doesn't overlap with any other
function names. The names “setup” and
“loop” have special meanings

Return types: Functions can return a
value once they are completed. Simple
functions don't do this, and to tell the
computer you don't want to return a value
you must put the word “void” in front of
the function definition.

Function parameters: We have seen
how you can use parameters when you
call functions. When a function is defined
the parameter definitions go here. If there
are no parameters you must include a
pair of empty brackets to show that the
parameter list is empty.

Curly brackets around
the function body: A pair
of curly brackets goes
round the “body” of the
function. The body
contains the instructions
for what to do when the
function is called.

Statements: The function body is made
up of one or more statements that do the
work of the function. Another function call
is an example of a statement. Each
statement is separated by a semi-colon.

14 - lushprojects.com

Blink Program with
a Variable

1) Go back to the “Blink” sketch
and edit it on the screen so it
looks like the example on the
right (changes are shown in
bold).

2) Verify the sketch using the verify
button.

3) Upload the sketch to the Arduino
and check that it works.

int waitTime;

void setup() {

 // initialize the digital pin as an output:

waitTime = 500;

pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(waitTime); // wait for delay specified

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(waitTime); // wait for delay specified
}

Variable declaration: This line in the
sketch creates a new variable called
“waitTime”. A variable is a labelled box
which is used to contain data used in the
program. The data can be read or changed
during the program.

In this case waitTime will contain integer
values. We use the word “int” to tell the
computer we want waitTime to be an
integer.

A variable declared outside any function
can be seen by all functions in a sketch.

Variable assignment: This statement puts
a value (500) in to the variable waitTime.

Variable use: We can now use the
variable name to mean the contents
instead of actually writing “500”.

15 - lushprojects.com

100R

10k

Wire probes

100R

LED Chain Circuit

1) Construct the circuit with the Arduino and
breadboard as shown on the right. We will use
variations of this circuit for the next few
experiments.
2) In the sketch used in the previous experiment
change the first parameter in the calls to pinMode
and digitalWrite from “LED_BUILTIN” to “2”.
Upload this sketch and you should see the left-
hand LED flash.

3) Using the menu option File → Open... open the
sketch “chain.pde”. Upload this sketch to the
Arduino. You should see the lights move in a chain
pattern.
4) Try modifying the Chain sketch to get other
patterns – eg reversing the direction of the chain,
or having the LEDs light in pairs.

5) Using the menu option File → Open... open the
sketch “digitalInput.pde”. Upload this sketch to the
Arduino.
6) With the digital input sketch running try touching
the ends of the wire probes together. What
happens? In a more permanent circuit the probes
could be replaced by a switch or a button.

The digitalInput sketch uses a new capability – the
possibility to treat an Arduino pin as an input. It
also uses an “if” statement (see next slide) to
change the behaviour of the Arduino based on the
input.

Let's look at what is happening electrically. When
the probes are disconnected the 10k resistor
“pulls” the voltage at the input low. When the
probes connect the input is connected directly to
the 5V supply from the Arduino and the input goes
high. This is a very common configuration. The
10k resistor is called a “pull down resistor”.

100R 100R 100R 10k
(Brown-Black
Orange)

Arduino

Pin 2 Pin 3 Pin 4 Pin 5 Gnd Pin 6

5V

NOTE: We are taking power for the circuit from the Arduino

16 - lushprojects.com

M
E

G
A

P
O

W
E

R
9

 V
o

lt

Removing the PC

Once the Arduino is programmed it no longer needs a PC. You
can power it from a bettery or other suitable power source.

To test this, disconnect the USB and connect the positive
battery lead to the “9V” or “Vin” pin and the negative battery
lead to the other GND pin.

17 - lushprojects.com

New Program Elements in digitalInput sketch

pinMode(inputPin, INPUT);

inputValue=digitalRead(inputPin);

if (inputValue==LOW) {
 ... things to do...
 }
 else {
 ... things to do....
 }

Set Pin Mode: Done in the setup function. This says that we want an
input on the inputPin.

Reading the input: This is done every time the sketch goes round the
main loop. The sketch looks at the value of the input pin and stores
either HIGH or LOW in the variable called “inputValue”. Think of the
variable as a labelled box to store values. Like other variables the type
of “inputValue” was declared at the start of the program

IF statement: This is used if you want to make the sketch do different
things based on the environment or the results of a past activity.
IF statement: This is used if you want to make the sketch do different
things based on the environment or the results of a past activity.

Condition: After the word “if” you have brackets that contain the condition that is being tested. The two
equals signs (“==”) means “has the value of” or “is the same as”. Here we see if the variable inputValue
contains the value “LOW”.
Other possible conditions include “!=” for “not equal to”, “>” for “greater than” and “<” for “less than”.

True actions: After the condition you have a list of statements surrounded
by curly brackets. These are what the sketch does if the condition being
tested turns out to be true.

False actions: After the true actions you may have the world “else” and then
another list of actions in surrounded by curly brackets. These are what the
sketch does if the condition being tested is false.

18 - lushprojects.com

Making Mistakes (and fixing them)

Mistakes – we all make them. In computer programming there are two different types of mistake you can
make in the software. A “syntax error” means you have written something in the program that the
computer can't understand. If your sketch contains syntax errors it can't be uploaded to the Arduino.

A “semantic error” means your sketch is understandable but you discover it doesn't do what you meant it
to do. This normally means you have made a logical mistake in designing your sketch.

Syntax Errors

Syntax errors will be detected when you either verify a sketch
or try and upload it to the Arduino. When a syntax error is
detected the status bar will turn from blue to red and red
error messages will appear in the program notification area.
The area where the computer detected the mistake will be
highlighted in the editor.

Unfortunately Processing doesn't handle syntax errors very
well. Its messages can be very hard to understand (even for
experts) and it doesn't always guess right where the error
occurred

Here are some things to check to try and fix any errors:
- Mistyping of names (spelling or case of letters)
- Missing semicolons after statements
- Unpaired round brackets or curly brackets
- Spaces in the middle of names

To minimise problems with syntax errors I suggest you start
by evolving the examples and make small steps towards what
you want, frequently verifying so that mistakes get caught
early.

Semantic Errors

Semantic errors are normally called “bugs”.
They could be anything from a program that
does nothing to a program that works 99% of
the time but occasionally fails unexpectedly.

The process of finding and fixing semantic
errors is often a piece of detective work.
Normally you should test your sketches
thoroughly to make sure that they behave the
way you want them to under all
circumstances.

If a sketch doesn't do what you expect then
try and work out why it follows the behaviour
it's showing. Pretend you are the Arduino and
“dry run” the instructions in your head. Think
about where in your sketch the problem may
be and what circumstances trigger the
problem. Try and narrow down the range of
possible points where the problem originates.

19 - lushprojects.com

Making A Noise

Let's move beyond blinking LEDs. In this experiment we will add
a speaker to the Arduino and start to make some noise. This also
provides a useful demonstration of how to connect larger loads
to the Arduino.

1) Add the extra elements shown to the existing circuit.
2) Open the sketch “digitalInputwithtone” and upload it to the
Arduino.
3) When you touch the wire probes together you should now get
a tone from the speaker.
4) Examine the sketch and see the new elements that create the
tone. Try changing the tone behaviour.

How the electronics works

The Arduino pins have a very limited capacity to drive electrical
current. One LED is OK, but much more is dodgy. We can use a
transistor to boost the output to drive more demanding loads – in
this case a speaker.

In the first transistor experiment we showed how a small current
on the base of the transistor could drive a much bigger current
through the collector. We use exactly this idea here. The
transistor is controlled from the Arduino by connecting the base
to an output pin via a resistor (1k in this example). The resistor
limits the current taken from the Arduino.

Even with a transistor, connecting 5V directly to the speaker is
too much. The 100R resistor in the collector limits current
through the speaker.

NB: Many examples on the web don't put a resistor in the base.
Without the base resistor the circuit is poorly designed any may
damage the Arduino.

100R

1k

1k

Arduino

Gnd Pin 7

5V

Note: Circuit Diagram only shows the speaker connection

10
0

R

ecb

NOTE:
Flat face of
transistor is
facing the
viewer

2N3704

20 - lushprojects.com

Driving Loads

We saw in the last experiment how a transistor can be used to let
the Arduino drive an electrical load like a speaker which is too big
for the Arduino to drive on its own (for reference the maximum
current load per pin is 40mA). The transistor configuration is a
general technique that can be used to drive most low-voltage
electrical loads.

For smaller loads (say up to 250mA) this general circuit can be
used.

1k

Arduino

Gnd
Pin

5V

Load

For larger loads, or loads that need a different power supply
voltage to the Arduino's 5V the following general circuit can be
used. You may need to check the suitability of the transistor. The
2N3704 we are using in the experiments has a maximum
capacity of 500mA. To test the current taken by a load connect it
to a power supply with a current meter in the path.

1k

Arduino

Gnd
Pin

5V

Load
Power
Supply
For Load
(About
15V max)

Some useful loads
You can use the general circuit patterns shown on the left to drive these loads.

LED Chains

With a transistor you can drive lots of
LEDs from a single pin. Various
calculators on the web can help you find
the right configuration for the number
and type of LEDs you want to use. Note
though that the online calculartors don't
always follow good design rules so
learning the manual approach is still
useful.

Small Motors

Small motors (like those in toys) can be controlled.
Watch the current and voltage requirements – even
small motors can have a high current when stalled.
A diode should be connected as shown to protect
the circuit from a reverse voltage that any
electromagnet generates when it is switched off.

M

Relay

A relay is an electrical switch which is
moved by an electromagnet. By
connecting the magnet as a load to the
Arduino the switch can be used to
control another circuit completely
independently. This has many uses – eg
if you are controlling something that is
too high power to be easily done with
just a transistor, or if you don't know the
full electrical characteristics of the thing
being controlled (eg you are faking a
button press on another piece of
equipment). Relay coils also need a
protection diode as shown

Relay Coil (Magnet)

Switch controlled by relay

21 - lushprojects.com

Arudino Shields

To make it easy to connect the standard Arduinos to external
systems you can use pre-made “Arduino Shields”. These
connect on top of the Arduino board.

Example shields:
- Motor control
- Ethernet
- Xbee
- Servo motor and Stepper Motor shields

Other things you can connect (with the right electronics)

Servo Motors
Servo motors were originally designed for use in radio control models. They have a lever which is
moved through about 280 degrees of rotation by the motor. The Arduino has special commands to
control stepper motors.

Stepper Motors
Stepper Motors are special motors that move in individual steps. They can be used for precise control
over position or speed of rotation.

Infrared Choppers
An infrared light can be shone through a gap to detect levers or other mechanical parts that interrupt
the light beam

.

Distance Sensors

22 - lushprojects.com

100k

100k
(Brown-Black-
Yellow)

Arduino

Gnd Analog In 0

5V

Note: Circuit Diagram
only shows the
analog input

Arduino Analog Inputs

We've seen the Arduino's digital inputs in action. Now we will
look at an analog input. The analog inputs can measure and
report the voltage at the pin in the range 0V to 5V.

1) Modify the circuit as shown (replace the 10k resistor with a
100k resistor and move the input wire from digital Pin 5 to Analog
Pin 0).
2) Open the sketch “simpleorgan” and upload the the Audruino
3) Try touching the wire probes to a pencil line track or to your
skin. You should get an organ effect.

The circuit used here is called a “voltage divider”. The voltage at
at the Analog input pin depends on the ratio of the 100k resistor
to the resistance between the two probes. As the resistance
between the probes decreases the voltage at the analog input
goes up.

The analog input can be connected to many types of sensor.
There are some common examples shown below.

Alternative Analog Inputs

10k to
100k

Arduino

Gnd Analog In

5V Light
Dependent
Resistor

Arduino

Gnd Analog In

5V

Variable
Resistor

23 - lushprojects.com

Servo Motor Example

Servo motors were originally designed for use in radio controlled
models. They can change their angle based on a control signal.
The Arduino can control the motor.

Construct a circuit with the servo motor as shown.

Try the examples:

File→ Examples → Servo → Sweep

And

File → Examples → Servo → Knob

In the second example the analog input will control the servo
position.

24 - lushprojects.com

Pulse Width Modulation (PWM)

The Arduino only has digital (0V or 5V) outputs. However it can
output an approximation of an intermediate analog voltage using a
technique called Pulse Width Modulation (PWM). In PWM a digital
output moves between the on and off states very quickly. The ratio
of the the “on” time to the “off” time (called the “duty cycle”) can be
varied to create an average voltage which is intermediate between
on and off voltages.

PWM signals aren't suitable for everything, but they do work well for
some types of system – in particular:
LEDs where the rate of blinking is too fast for the human eye to see,
and
Small motors which can have the speed varied by PWM.

PWM in the Arduino

PWM is only available on the special outputs labelled with “PWM”
on the board. There are further restrictions if you want to combine
PWM with the “tone” function. To send a PWM signal set the pin as
an output and use the analogWrite() function with a value between
0 for all off and 255 for all on (see diagram). The designers of
Arduino made a big mistake naming this function – there is no
analog output. “PWMWrite()” would be a much better name!

To test the effect of PWM on an LED keep the same circuit as
before and load the sketch “organandlight” and upload to the
Arduino This sends a PWM signal to pin 6 which depends on the
pitch of the organ – the LED should be bright for low notes and
dimmer for higher notes.

LED
Dim

LED
Bright

Motor
Slow

Motor
Fast

LED
Off

Motor
Off

25 - lushprojects.com

Arduino Organ II with light effects

A fun thing to finish (and show a more complicated level of Arduino
programming).

Using the same electronics as before load the sketch
“organandlight2” and upload to the Arduino. You should now have
an organ with lights that flash in sequence based on the frequency.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

